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A relationship is established between the temperature for vigorous spontaneous 
boiling and the critical parameters for solutions. 

i have previously [i, 2] given a method for estimating the vigorous spontaneous boiling 
temperature T* for a binary solution at a given concentration x as a function of the pressure 
p, which is based on approximate thermodynamic similarity between the lines for the attain- 
able superheating T*(p; x = const); input data: critical parameters Pc and T c for pure com- 
ponents. The essence is as follows. A straight line is drawn in p, T coordinates joining 
the critical points for the components, and an auxiliary point (Pa, Ta) is defined corre- 
sponding to the concentration (in the linear approximation for T a = Ta(x)). The straight 
line joining that point to the point (0.i MPa, 0.gT a) is an approximation for the required T*(p,x = 
const) relationship. This procedure is applicable if there is marked difference between the two 
critical temperatures. The limits to it can be defined from measurements on T*(p, x) for 
systems with similar T c in the azeotropic interval [3]. A temperature minimum is character- 
istic of the critical curve for solutions of that type. 

Pulsed isobaric heating has been used with a platinum probe [4, 5] to examine T*(p, x) 
for hexane-acetone, heptane-acetone, heptane-propanol, octane-benzene [6], and hexane-metha- 
nol solutions; probe diameter 20 ~m, length 2 cm, heating time to start of vigorous spontane- 
ous boiling 35 Dsec, nucleation frequency about 1024 (p = 0.i MPa) to 1029 m-3"sec -i (p = Pc)" 

Those superheating lines are simple in form (Fig. i), as for the solutions previously 
examined [i, 2], and can be represented as straight lines to a first approximation; to predict 
T* from the minimum data, we use an empirical rule concerning the similarity in the reduced 
temperatures ~a = T~/T c = 0.89-0.91 for most simple liquids [5]. My measurements [6] show that 
~a for various concentrations of six arbitrarily selected solutions having similar component 
T c differed less than 1% from the ra for the pure components; that 1% spread is due to error 
in determining T~ and T c (the critical temperatures were taken from [7-10]). Therefore, to 
approximate T* (p; x = const) for the solution having a small critical-temperature differ- 
ence ATc, one can proceed as follows. The attainable superheating temperature at atmospheric 
pressure T~(x) is derived as ~a(x)Tc(x), in which ~a is the linearly interpreted 
T a for the pure components. The point on the (Pc(X), Tc(x)) critical curve corre- 
sponding to the set concentration is joined by a straight line to the (0.i MPa; T~(x)) point, 
on which lie the T* (p) for the solution. If there are no reference data on the superheating, 
one can assume Sa(x) = 0.9. Table 1 gives measurements and T*(p) estimates from this scheme 
for octane-benzene solutions, as well as estimates from the two critical point method [i, 2]. 
The linear approximation is reasonably accurate. For p = Pa, excess of T* over the satura- 
tion temperature (superheating) is about i00 K. Error in estimating T*(p) from the two cri- 
tical points increases with the depth of the minimum on the critical curve; AT 2 attains 30 K 
for the hexane-methanol system 

One can use T* (p, x) data to determine critical parameters for solutions, which are key 
data in similarity-theory calculations; T c can be derived from T* for atmospheric pressure: 

T c (x) = T~ (~)IV a (x). ( 1 ) 

(i) was tested by comparing Tc(x) results from (i) with measurements [7-10]; the T~(x) and ~a(X) 
used in (i) were taken from [5, 6, i0, ii] (total of 12 systems). The differences from the avail- 
able Tc(x) measurements did not exceed 4 K, apart from the hexene-benzene system [ii] (Fig. 
2), where the Tc(x) from (i) qualitatively reproduced the [7] critical curve but ran at lower 
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Fig. i Fig. 2 

Fig. i. T* for heptane-acetone solutions [open points: i) 
x = 0; 2) 0.5; 3) 0.66] and hexane-acetone [filled 
points: 4) x = 0; 5) 0.37; 6) 0.64]; KI, K2, K s critical 
points for heptane, hexane, and acetone; dashed lines criti- 
cal curves [7]; T* in K and p in MPa. 

Fig. 2. T c as a function of molar fraction of second compo- 
nent; solid lines from experiment: i) hexane-acetone; 2) hex- 
ane-perfluorobenzene; 3) hexane-benzene; open points from (i), 
filled points calculation from homogeneous nucleation theory. 

temperatures, with ATc(x = 0.6) attaining 9 K, which could be due to premature boiling be- 
cause of inadequate conditions, which reduces T*. When one uses T~(x) derived for the hexane- 
benzene system [ii] with homogeneous nucleation theory and (i), ATc(x) is reduced to 0.5-4.3 K. 

(i) has been derived for solutions with similar component Tc; any increase in AT c is 
usually accompanied by change in the critical curve shape, with the minimum vanishing and a 
pressure maximum appearing. The accuracy of (i) is reduced, since the ~a (x) diverge from 
the range characteristic of pure substances, 0.89-0.91 [i, 2]. One can recommend using (i) 
for Tc(x) for any system where the critical curve deviates from linear course in pressure 
by not more than 10% in p, T coordinates, which corresponds to deviation from linearity in 
�9 a(X = 0-i) of about 1%. Thecriticalcurves for over 200 solutions enabled me to correlate the 
deviation from ideal behavior in Pc (APc(X), see segment 59 in Fig. 3) and the pure-component 

parameters; as a rule, the condition APc(X)/~c < 0.i is met if the following applies: 

- -A-  o,3 3,5. (2) 

Here A is the Filippov similarity criterion [12] in one-parameter similarity theory; the 
superscripts + and - relate correspondingly to the larger and smaller T c and A for the pure 
components; the difference 4 - A is correlated with basic molecular geometrical parameters 
that make themselves felt in macroscopic features [13], while ATc/T c is a characteristic of 
the component-molecule differences. 

If the inequality in (2) is reversed, the [i, 2] results provide a simple method of 
estimating the critical pressure; input data: T~ (x) and Tc(x). Sequence: from the [i, 2] 
formula, T A(X) = T~(x)/~a(X) for the given concentration gives the auxiliary point (PA, TA) 
on the straight line joining the critical points for the components (point 8 in Fig. 3); the 
T'~(x) and TA(X) points are joined by a straight line, which is extended to the intersection 
with the Tc(x) = const line, and the abscissa for that point corresponds to the required 
Pc(X). Figure 3 illustrates a Pc(X) calculation on this scheme for the pentane-dodecane sys- 
tem, where the T~ (x) data are from [14] (graphical representation), and the critical tempera- 
tures for the concentrations measured in [14] have been determined from Filippov's simple and 
reliable formula [15, 16]. To check the accuracy, we measured T~ (x) and calculated pc(X) 
for the hexane-decane solution having a pressure maximum on the critical curve. Comparison 
with measurements [7] gives the error as Apc(x)/Pc ~ 10%. One expects the error to increase 
as the pressure maximum on the critical curve rises. 
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TABLE i. Comparison of Measured T* for 
Octane-Benzene Solutions with Estimates 
from the Proposed Scheme (AT I = T~ -T*) 
and from the Two Critical Point Method 
(AT 2) for p in MPa and AT in K 
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Fig. 3. Calculated critical pressures for 
the pentane-dodecane system derived from 
known T~(x) [14] and Tc(x) [15, 16]. i) 

x = 0; 2) 0.15; 3) 0.28; 4) 0.43; 5) 0.59; 
6) 0.73; 7) I; 8) auxiliary point for x = 
0.59; the length of the segment between 
points 5 and 9 gives the deviation in the 
critical curve from linear with respect to 
pressure (APc(X)). 

This method of estimating T*(p; x = const) for the binary solution is based on the known 
critical parameters for the system; one can use data on T~ for solutions to estimate the cri- 
tical temperature or pressure. 

NOTATION 

T, temperature; T*, spontaneous-boiling temperature; x, molar fraction of second compo- 
nent; p, pressire; Pc, linearly interpolated Pc for components at given temperature; T a = 

T~/Tc; ATc, difference in component critical temperatures;ATc(x), difference between measured 
and calculated T c for given x; A, similarity criterion. Subscripts: c, critical point; a, 
atmospheric pressure; s linear approximation. 
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EVAPORATION OF BUBBLE AEROSOL DROPLETS FROM SOLID SUBSTRATES 
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Evaporation-kinetic studies have been made on droplets formed under equilibrium 
and nonequilibrium conditions. There are differences due to the physicochemi- 
cal features. 

Charged droplets are formed when gas bubbles break at the surface of an aqueous elec- 
trolyte solution [i], and their compositions differ from that of the solution [2]. This is 
of interest to the theory of atmospheric processes [3] and also for optimizing heat and mass 
transfer in industry [4]. Here particular interest attaches to how small drops evaporate 
from solid substrates. 

We used drops formed under nonequilibrium and equilibrium conditions; in the first case, 
the drops were made by bubble breaking at the surface, which involves highly nonequilibrium 
conditions, and the droplet formation speeds may be I0-i00 m/sec [5]. When a bubble breaks, 
a cavity remains in the liquid, from which a column is ejected that breaks up into droplets. 
The bubbles were produced from a single capillary in distilled water, which was 2.2 cm below 
the surface. The generation rate was 23-25 bubbles a minute. At 50 mm from the surface 
there was a PTFE plate, which had been cleaned by boiling in freshly prepared chromic acid 
followed by repeated washing in double-distilled water and boiling in it. In the second, an 
MSh-10 microsyringe (scale 0.2 ~I) was used in depositing a drop of distilled water slowly 
on the PTFE, the volume being the same. We compared results for identical-volume drops made 
under the two conditions. There were 40 such comparisons. The drops were selected and their 
parameters were measured in a saturated atmosphere in both cases. The height and base dia- 
meter were determined with an MIR-2 microscope (scale division 0.07 mm). 

Table i gives the polynomials fitted to the volume V and side surface S in terms of 
the time T; the polynomials have been fitted to minimum variance. The assumption was that 
the drops were spherical, which was checked from the criterion [6] Ref << a, in which a is 
the capillary constant. The variations in volume and surface for the bubble aerosol were 

Ordzhonikidze Novocherkassk Polytechnical Institute. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 55, No. 6, pp. 894-896, December, 1988. Original article submit- 
ted July 15, 1987. 

1332 0022-0841/88/5506-1332512.50 �9 1989 Plenum Publishing Corporation 


